Лекция 7
ГЛАВА 7. Дженерики
Что мы расскажем:
· Использование дженериков
· [bookmark: _GoBack]Ограничения
· Дисперсия
· Реифицированные дженерики
Ах, дженерики. Эта коварная тема, которая возникает даже в текстах для начинающих. Этот предмет сбивает с толку многих новичков, потому что его сложно понять и еще сложнее объяснить. Но нам нужно с этим разобраться, потому что без Generics сложно работать с коллекциями.
По большей части дженерики Kotlin работают так же, как дженерики Java; но у них есть некоторые отличия. В этой главе мы рассмотрим, как работать с дженериками и насколько дженерики Kotlin похожи (или отличаются) от дженериков Java. Кроме того, не беспокойтесь из-за сложности дженериков, в этой главе мы не будем делать ничего слишком сумасшедшего.
Почему дженерики
Дженерики появились в Java примерно в 2004 году, когда был выпущен JDK 1.5. До создания дженериков вы могли писать коды, подобные приведенному в листинге 7-1.
Листинг 7-1. Использование необработанного списка, Java
List v = new ArrayList();
v.add("test");
Integer i = (Integer) v.get(0); // Ошибка выполнения

Вы можете сказать: «Но зачем вам делать что-то столь беспечное и откровенно идиотское? Из листинга 7.1 ясно видно, что мы помещаем String в ArrayList; поэтому просто не выполняйте никаких операций, которые не подходят для String. Задача решена.» Это не всегда может быть так просто. Образец кода явно надуман, и прямо сейчас легко обнаружить ошибку, но, если вы делаете что-то нетривиальное, не всегда может быть очевидно, что содержит список.
Еще один момент, на который следует обратить внимание в отношении примера кода - и это на самом деле главный момент - это то, что код компилируется без проблем. Вы обнаружите ошибку только во время выполнения.
У компилятора не было способа предупредить нас о том, что мы собираемся сделать что-то небезопасное по типу. Это основная проблема, которую пытаются решить дженерики: безопасность типов.
Возвращаясь к листингу 7.1, мы знаем, что переменная v является списком. Было бы полезнее, если бы мы знали, какие вещи хранятся в этом списке. Именно в таких ситуациях полезны дженерики. Это позволяет нам говорить такие вещи, как «это список строк» ​​или «это list of Ints »- и компилятор знает это заранее; и поскольку компилятор знает об этом, он может помешать нам делать несоответствующие вещи, такие как преобразование String в Int или вычитание с помощью Strings и т. д. В листинге 7-2 показано, как использовать универсальные шаблоны в нашем коде.
Листинг 7-2. Список с обобщениями: Java
List<String> v = new ArrayList<String>();
v.add("test");
Integer i = v.get(0); // (ошибка типа) ошибка времени компиляции

Теперь, когда компилятор заранее знает, какие объекты находятся в списке, он может помешать нам выполнять неподдерживаемые операции со списком.
Коды в листингах 7-1 и 7-2 действительны в Java, что означает, что у вас есть возможность не использовать универсальные шаблоны в коллекциях (необработанные типы). Java должен делать это, потому что ему необходимо поддерживать обратную совместимость с кодами, которые были написаны до JDK 5. Kotlin, с другой стороны, не нуждается в поддержке какой-либо совместимости с устаревшими кодами. Итак, в Котлине нельзя использовать необработанные типы. Все коллекции Kotlin требуют параметров типа. Всегда нужно использовать дженерики.
Терминологии
Общее программирование - это языковая функция Kotlin. С его помощью мы можем определять классы, функции и интерфейсы, которые принимают параметры типа. Параметризованный тип позволяет нам повторно использовать алгоритм для работы с разными типами; это действительно форма параметрического полиморфизма.
На рис. 7.1 показано расположение параметров и аргументов типа в универсальном классе.
➊ Угловые скобы. Если в конце имени класса есть угловые скобки, он называется универсальным классом (существуют также универсальные функции и интерфейсы).
➋ Типовой параметр. Он определяет тип данных, с которыми может работать этот класс. Вы можете думать об этом как о части реализации класса. Сейчас мы используем букву T для обозначения параметра типа, но это произвольно. Вы можете называть это как угодно, это может быть любая буква или комбинация букв; на вашем месте я бы придерживался Т, потому что это соглашение, которому следуют многие разработчики. Вы можете использовать T во всем коде внутри класса, как будто это настоящий тип. Это заполнитель для типа. В этом примере мы использовали T как тип для свойства элемента и как тип возвращаемого значения для функции getLeaf.
➌ Тип аргумента. Чтобы использовать универсальный класс, необходимо указать аргумент типа. Теперь, когда мы создаем экземпляр класса Node, T будет заменен аргументом типа (Int и String на этом рисунке).
Вы видели общий код в предыдущих главах, особенно в главе 6 (Коллекции). Все классы коллекций Kotlin используют дженерики. Как я уже сказал, в Котлине нет сырых типов. Невозможно создать только список - вы должны указать, какой это список (например, «список строк» ​​List <String> или «список Ints» <Int>).
Использование Generics в функциях
Чтобы создать универсальную функцию, объявите параметр типа перед именем функции. Затем вы можете использовать параметр типа в любом месте функции.
Листинг 7-3. fooBar, Общая функция
fun <T> fooBar (arg: T): String {➊
 return "Heya $ arg" // ➋
}
println (fooBar ("Joe")) // выводит "Heya Joe"
println (fooBar (10)) // выводит "Heya 10"

➊ Параметр типа T используется как тип параметра функции arg.
➋ Мы просто возвращаем аргумент, объединенный в String.
Это довольно просто сделать. Мы просто использовали параметр типа в одном месте, и функция возвращает строку, независимо от типа параметра. Другой пример см. в листинге 7-4.
Листинг 7-4. Более сложная функция fooBar
fun <T> fooBar(arg:T) : T { ➊
 var retval:T = 0 as T
 when (arg) {
 is String -> { ➋
 retval = "Hello world" as T ➌
 }
is Number -> {
 retval = 100 as T
 }
 }
 return retval
}

➊ В этом примере мы использовали параметр типа как тип для arg (параметр для функции fooBar) и как тип возвращаемого значения самой функции.
➋ Мы проверяем, имеет ли arg тип String. Если это так, мы также эффективно преобразуем его в String; умный каст, помнишь?
➌ Мы возвращаем «Hello world» и преобразуем его (принудительно) как T. Мы не можем прямо здесь вернуть тип «String», потому что fooBar ожидает вернуть тип T вызывающей стороне, а не String.
Вы также можете использовать универсальные шаблоны для функций расширения. Если вы создаете функцию, которая работает со списками, вы, вероятно, захотите, чтобы она работала со списками любого типа, а не только со строками или объектами. В листинге 7-5 показано, как использовать дженерики в функции расширения.
Листинг 7-5. Дженерики в функции расширения
fun <T> List<T>.getIt(index:Int): T { ➊
 return this[index] ➋
}
fun main(args: Array<String>) {
 val lfruits = listOf("Apples", "Bananas", "Oranges") ➌
 val lnumbers = listOf(1,3,5) ➍
 val lnumlist = (1..100).toList().filter { it % 5 == 0 } ➎
 println(lnumlist.getIt(5))
 println(lfruits.getIt(1))
}

➊ Вы можете использовать параметр типа в получателе (List <T>) и тип возвращаемого значения функции расширения.
➋ Не будем делать ничего необычного; давайте просто вернем элемент по индексу. В производственном коде вы можете действительно проверить, существует ли индекс, прежде чем возвращать его. Если вы забыли, к чему это относится, это относится к самому списку (это объект-получатель).
➌ Наша функция расширения работает со списком строк.
➍ Он также работает со списком Ints.
➎ Это немного необычно, но, в конце концов, оно все равно возвращает список, так что наша функция расширения должна работать.
Использование дженериков в классах
Как и в Java, вы можете создать общие классы Kotlin, поставив пару угловых скобок после имени класса и поместив параметр типа между угловыми скобками. После этого вы можете использовать параметр типа в любом месте класса. Листинг 7-6 показывает, аннотирует и объясняет, как написать универсальный класс.
Листинг 7-6. Написание универсального класса
class Node<T>(val item:T) { ➊
 fun getLeaf() : T { ➋
 return item
 }
}
fun main(args: Array<String>) {
 val m = Node<Int>(1) ➌
 val n = Node(1) ➍
 val o = Node<String>("World") ➎
}

➊ Параметр типа объявляется сразу после имени класса, Node <T>. Мы используем T как тип для элемента параметра.
➋ Мы также используем T как возвращаемое значение функции getLeaf.
➌ Мы передаем Int конструктору Node. Мы можем быть подробными и указать Int в качестве параметра типа, Node <Int>.
➍ Узел может определить параметр типа, поэтому мы можем пропустить угловые скобки. Это тоже нормально писать так.
➎ А поскольку это общий класс, он работает и со строками.
Вы можете ограничить или ограничить типы, которые могут использоваться в качестве аргументов типа для класса или функции. На данный момент наш класс Node должен работать с любым типом, потому что родительский элемент (или верхняя граница) по умолчанию для параметра типа, если вы не укажете ограничение, будет Any? (Обнуляемый тип, поэтому стоит вопросительный знак).
Когда вы указываете ограничение верхней границы для параметра типа, это ограничивает типы, которые вы можете использовать для создания экземпляра класса. Например, если мы хотим, чтобы наш класс Node принимал только Ints, Double или Floats, мы могли бы использовать Number в качестве ограничения верхней границы. См. Листинг 7-7 для примера кода.
Листинг 7-7. Класс узла с ограничением
class Node<T:Number>(val item:T) { ➊
 fun getLeaf() : T {
 return item
 }
}
fun main(args: Array<String>) {
 val m = Node<Int>(1) ➋
 val n = Node(1.0F) ➌
 val o = Node<String>("World") ➍
 val p = Node(1.0) ➎
}

➊ Теперь мы накладываем ограничение на параметр типа <T: Number>. Единственные типы, которые мы можем использовать для создания экземпляра этого класса, должны быть подтипами Number.
➋ Int - это подтип числа, так что все в порядке.
➌ Поплавок тоже в порядке.
➍ Это больше не будет работать; IntelliJ сообщит вам, что «аргумент типа находится вне границ».
➎ Это должно работать для Double, так как это дочерний класс числа.
Если у вас нет каких-либо ограничений, кроме возможности использовать значение NULL для аргумента типа, вы можете просто использовать Any в качестве верхней границы для параметра типа; см. Листинг 7-8.
Листинг 7-8. Предотвращение аргументов нулевого типа
class Node<T:Any>(val item:T) {
 fun getLeaf() : T {
 return item
 }
}

Дисперсия
Нам нужно будет рассмотреть некоторые из наших основ объектно-ориентированного программирования (ООП), чтобы подготовиться к обсуждению дисперсии. Надеюсь, мы сможем пробудить вашу память и вспомнить некоторые фундаментальные принципы ООП.
ООП - это благо для разработчиков; благодаря этому мы можем писать коды, подобные листингу 7-9.
Листинг 7-9. Назначьте переменную Int для числового типа
val a:Int = 1
val b:Number = a
println("b:$b is of type ${b.javaClass.name}")

Мы также можем написать такие функции, как Листинг 7-10.
Листинг 7-10. Функция, принимающая числовой тип

foo(1)
foo(100F)
foo(120)
fun foo(arg:Number) {
 println(arg)
}

Коды в листингах 7-9 и 7-10 возможны благодаря принципу замещения Лискова (LSP). Это одна из наиболее важных частей ООП - там, где ожидается родительский тип, вы можете использовать подтип вместо него. Причина, по которой мы используем более обобщенный тип (например, Number в листинге 7-10), заключается в том, что в будущем, если нам понадобится, мы можем написать реализацию подтипа и вставки в существующий и рабочий код. В этом суть принципа открытости и закрытости (который гласит, что класс должен быть открыт для расширения, но закрыт для модификации).
Примечание. Принцип замещения Лисков и Принцип открытости и закрытия являются частью принципов проектирования SOLID. Это один из наиболее популярных наборов принципов проектирования в ООП. SOLID означает (S) Единственная ответственность (O) Открыто-Закрыто (L) Замещение Лисков (I) Разделение интерфейса и (D) Инверсия зависимостей.
Возьмем другой пример, см. Листинг 7-11.
Листинг 7-11. Сотрудник, программист и тестировщик
open class Employee(val name:String) {
 override fun toString(): String {
 return name
 }
}
class Programmer(name:String) : Employee(name) {}
class Tester(name:String) : Employee(name) {}
fun main(args: Array<String>) {
 val employee_1 :Employee = Programmer("Ted") ➊
 val employee_2 :Employee = Tester("Steph") ➋
 println(employee_1)
 println(employee_2)
}

➊ employee_1 относится к типу Employee, мы назначаем ему объект Programmer, что нормально. Программист - это подтип Сотрудника.
➋ Здесь то же самое, тип Tester является подтипом Employee, поэтому с назначением все в порядке.
Никаких сюрпризов, принцип Лискова все еще работает. Даже если вы поместите программиста и сотрудника в список, отношение типов сохраняется.
Листинг 7-12. Сотрудник и программист в списках
val list_1: List<Programmer> = listOf(Programmer("James"))
val list_2: List<Employee> = list_1

Все идет нормально. А как насчет следующего кода? как вы думаете, это сработает? (См. Листинг 7-13.)
Листинг 7-13. Группа сотрудников и программистов
class Group<T>
val a:Group<Employee> = Group<Programmer>()

Это одна из сложных частей дженериков. Листинг 7-13 в его нынешнем виде не работает. Даже если мы знаем, что Programmer является подтипом Employee и что то, что мы делаем, является типобезопасным, компилятор не пропустит нас, потому что второй оператор в коде имеет проблему.
Когда вы работаете с дженериками, всегда помните, что по умолчанию Группа <Сотрудник>, Группа <Программист> и Группа <Тестер> не имеют отношения типов, даже если мы знаем, что Тестировщик и Программист являются подтипами Сотрудника. По умолчанию параметр типа в классе Group <T> является неизменным. Чтобы второй оператор (в листинге 7-13) работал, Group <T> должен быть ковариантным. Решим в Листинге 7-14.
Листинг 7-14. Классы Сотрудник, Программист, Тестировщик и Группа
class Group<out T> ➊
open class Employee(val name:String) {
 override fun toString(): String {
 return name
 }
}
class Programmer(name:String) : Employee(name) {}
class Tester(name:String) : Employee(name) {}
fun main(args: Array<String>) {
 val a:Group<Employee> = Group<Programmer>() ➋
}

➊ Когда вы помещаете ключевое слово out перед параметром типа, это делает параметр типа ковариантным.
➋ Этот код работает, потому что группа <Программист> теперь является подтипом группы <Сотрудник> благодаря ключевому слову out.
Из этих примеров мы можем теперь обобщить, что если тип Programmer является подтипом Employee, а Group <T> ковариантен, то Group <Programmer> является подтипом Group <Employee>. Кроме того, мы можем обобщить этот универсальный класс, такой как Group, инвариантен для параметра типа, если для данных типов Employee и Programmer, Группа <Программист> не является подтипом Группы <Сотрудник>.
Теперь мы разобрались с инвариантом и ковариантом. Последняя терминология, с которой нам нужно иметь дело, контравариантна. Если параметр типа Group <T> контравариантен для одних и тех же данных типов Сотрудник и Программист, тогда мы можем сказать, что Группа <Сотрудник> является подтипом Группы <Программист> - это полная противоположность ковариантности.
Листинг 7-15. Используйте ключевое слово in для контравариантности
class Group<in T> ➊
open class Employee(val name:String) {
 override fun toString(): String {
 return name
 }
}
class Programmer(name:String) : Employee(name) {}
class Tester(name:String) : Employee(name) {}
fun main(args: Array<String>) {
 val a:Group<Programmer> = Group<Employee>() ➋
}

➊ Ключевое слово in делает параметр типа <T> контравариантным;
➋ Группа типов <Сотрудник> теперь является подтипом группы <Программист>.
Подкласс против подтипа
Хорошо. Я подозреваю, что то, что вы прочитали за последние 10 минут, оставило во рту горький привкус. Как может случиться так, что Programmer является подтипом Employee, List <Programmer> является подтипом List <Employee>, а Group <Programmer> не является подтипом Group <Employee>? Давайте попробуем ответить на этот вопрос, вернувшись к концепции класса, типов, подкласса и подтипов.
Мы думаем о классе как о чем-то вроде синонима типа, и в целом это верно - по крайней мере, для неуниверсальных классов и в большинстве случаев. Мы знаем, что у класса есть по крайней мере один тип - это тот же тип, что и у самого класса. Вернитесь в то время, когда вы впервые изучали классы Java - ваш учитель, наставник или, возможно, любимый автор должен был определить тип объекта следующим образом: «Это сумма всего его публичного поведения, иначе известного как методы или контракт объекта» или что-то в этом роде. Скажем так, это набор поведения объекта.
Возвращаясь к «у класса есть хотя бы один тип», ну, у него может быть и больше. Достаточно взглянуть на рисунок 7-2 (см. в книге).
Рисунок 7-2. Иерархия для группы классов и интерфейсов
Из рисунка 7-2 мы можем сказать:
• Любой находится в верхней части таблицы классов; class Any - это эквивалент java.lang.Object.
• Сотрудник является подклассом Any. У Employee есть два типа: тот, который он унаследовал от Any, и сам, потому что класс Employee может определить свой собственный набор поведения (методов), так что это считается одним типом.
• Программист - это подкласс Employee, который является подклассом Any, что означает, что Programmer имеет три типа: один от Any, другой от Employee, а третий - от самого класса Programmer.
• Number - это подтип Any, но он также реализует интерфейс Comparable. Итак, Number имеет три типа: один из Any, другой из самого себя и третий из интерфейса Comparable. Можно сказать, что Number является подтипом Any, а также подтипом Comparable - чего бы вы ни ожидали от Comparable, Number можно сделать всем: что может сделать Any, может и Number. Это базовое ООП.
• Класс String имеет четыре типа: один от Any, другой от Comparable, еще один из CharSequence и, наконец, из своего собственного класса.
Из утверждений и диаграммы можно понять, что подкласс и подтип могут быть взаимозаменяемыми. Между ними нет большой разницы. Их различие станет очевидным, когда мы начнем рассматривать типы, допускающие значение NULL.
Случай типа, допускающего значение NULL, является примером, когда подкласс не совпадает с подтипом. См. Рисунок 7-3.
Когда вы ставите вопросительный знак после имени типа, он становится версией этого типа, допускающей значение NULL. В Kotlin мы можем создать два типа из одного и того же класса: версию, допускающую значение NULL, и версию, не допускающую значения NULL. Мы действительно не можем сказать, что Программист является подклассом Программиста? потому что для Programmer существует только одно определение класса, но Programmer (версия, не допускающая значения NULL) является подтипом Programmer? (обнуляемый). Аналогичным образом Any является подтипом Any? но Any? не является подтипом Any - обратное направление неверно.
Можно написать
var j: Programmer? = Programmer ("Ted")
// присвоить значение NULL Программисту, допускающему значение NULL
j = null. // затем мы присваиваем j значение null

Но нельзя писать
var i: Programmer = j
// присваивать j (который имеет значение NULL) для программиста, не допускающего значения NULL.
Теперь переходим к дженерикам. Рисунок 7-4 должен помочь нам проиллюстрировать следующий набор концепций, с которыми нам нужно разобраться.
Мы знаем, что первые отношения Employee - это супертип программиста. Мы также знаем, что List <Employee> примет List <Programmer>; мы протестировали это в Листинге 7-12 - вы, вероятно, не совсем понимаете, почему это работает, поэтому я вернусь к этому моменту после того, как мы разберемся с третьим набором ящиков. Теперь, учитывая коды
class Group<T>
val a:Group<Employee> = Group<Programmer>() // не уверен

Почему мы не можем достоверно ответить на вопрос «Является ли группа <Сотрудник> надтипом группы <Программист>?»
Это потому, что, хотя Group является классом, Group <Employee> не является, и, по расширению, Group <Programmer> не является подклассом Group <Employee> - если вы сейчас думаете о List <Employee> и List <Programmer> , стоп. Я сказал, что вернусь к этому.
В первую очередь придерживайтесь группы <Сотрудник> и группы <Программист>. Таблица 7-1 должна помочь нам суммировать некоторые из этих вещей.
Таблица 7-1. Класс против типа
	Объект
	Это класс?
	Это тип?

	Программист
	Да
	Да

	Программист?
	Нет
	Да

	Список
	Да
	Да

	Список <Программист>
	Нет
	Да

	Группа
	Да
	Да

	Группа <Программист>
	Нет
	Да

Теперь мы можем установить, что Group <Employee> не имеет отношения типа с Group <Programmer>, даже если класс Employee имеет отношение типа с Programmer.
Параметр типа в Group <T> по умолчанию является инвариантным (без отношения типов). Чтобы изменить дисперсию <T>, вам нужно использовать ключевое слово out (чтобы сделать его ковариантным) или in (чтобы сделать контравариантным).
Теперь мы можем установить, что Group <Employee> не имеет отношения типа с Group <Programmer>, даже если класс Employee имеет отношение типа с Programmer.
Параметр типа в Group <T> по умолчанию является инвариантным (без отношения типов). Чтобы изменить дисперсию <T>, вам нужно использовать ключевое слово out (чтобы сделать его ковариантным) или in (чтобы сделать контравариантным).
Итак, если мы хотим, чтобы Group <Programmer> был подтипом Group <Employee>, нам нужно написать класс Group следующим образом:
class Group <out T>
val a: Group <Employee> = Group <Programmer> () // теперь все в порядке

Теперь мы можем вернуться к вопросу List <Employee> и List <Programmer>. Почему и как это работает? Почему так можно писать?
var m: List <Сотрудник> = listOf (Программист ("Тед"))
Простой ответ заключается в определении интерфейса List, я скопировал исходный код интерфейса List в листинге 7-16 для вашего удобства; Я удалил все комментарии.
Листинг 7-16. Выдержка из исходного кода интерфейса списка
public interface List<out E> : Collection<E> { ➊
 override val size: Int
 override fun isEmpty(): Boolean
 override fun contains(element: @UnsafeVariance E): Boolean
 override fun iterator(): Iterator<E>
 override fun containsAll(elements: Collection<@UnsafeVariance E>):
Boolean
 public operator fun get(index: Int): E
 public fun indexOf(element: @UnsafeVariance E): Int
 public fun lastIndexOf(element: @UnsafeVariance E): Int
 public fun listIterator(): ListIterator<E>
 public fun listIterator(index: Int): ListIterator<E>
 public fun subList(fromIndex: Int, toIndex: Int): List<E>
}

➊ Параметр типа ковариантен. List использует ключевое слово out перед параметром типа E.
Причина, по которой можно назначить List <Programmer> для List<Employee>, заключается в том, что параметр типа в List <E> является ковариантным. Следовательно, если тип Employee является супертипом Programmer, а List <E> ковариантен, тогда List <Programmer> является подтипом List<Employee>.
Итак, теперь, когда мы немного лучше понимаем типы и подтипы, как в фильме Квентина Тарантино, я хотел бы, чтобы вы вернулись примерно на 20 минут назад и снова прочитали раздел «Дисперсия».
Овеществление (Reified) Generics
Давайте сначала разберемся со значением слова «овеществлять». Это означает «сделать что-то реальное», и причина, по которой мы используем рифмы и дженерики в одном и том же выражении, заключается в стирании типов в Java.
Стирание типа означает именно то, что вы думаете. Java и Kotlin также стирают информацию об общих типах во время выполнения. Для этого есть веские причины, но, к сожалению, мы не будем обсуждать эти причины, почему дизайн языка такой, но мы будем обсуждать его эффекты. Из-за стирания типа вы не можете выполнять какие-либо действия по отражению, и вы не можете выполнять какие-либо проверки во время выполнения для типа, если он общий. См. Пример в листинге 7-17.
Листинг 7-17. Проверить тип во время выполнения
fun checkInfo (items: List <Any>) {
 if (items is List <String>) {➊
 println ("элемент - это список строк")
 }
 }
}
➊ Это не скомпилируется. Ошибка: «Невозможно проверить экземпляр стертого типа».
Ключевое слово is не работает с универсальными типами во время выполнения; умное приведение прерывается из-за стирания типа. Если у вас есть некоторая уверенность в том, каким будет тип среды выполнения списка, вы можете принять умозрительное решение и преобразовать его, используя ключевое слово as, например:
val i = item as List<String>
Компилятор пропустит вас, но это опасно. Давайте рассмотрим еще один пример, в котором мы можем создать более убедительный аргумент в пользу того, почему нам нужно сохранять информацию о типе во время выполнения.
Допустим, у меня есть список объектов, объекты программиста и тестировщика. Я хочу создать функцию, в которой я могу передать параметр типа и фильтровать список, используя этот параметр типа. Я хочу, чтобы функция возвращала отфильтрованный список. В листинге 7-18 показан пример кода, показывающий, как это можно сделать - пример кода, конечно, не будет работать из-за проблемы со стиранием типа, просто сначала прочтите его, и мы исправим его позже.
Листинг 7-18. Фильтрация списка с использованием параметра типа
fun main(args: Array<String>) {
 val mlist = listOf(Programmer("Ted"), Tester("Steph")) ➊
 val mprogs = mlist.typeOf<Programmer>() ➋
 mprogs.forEach { ➌
 println("${it.toString()} : ${it.javaClass.simpleName}")
 }
}
fun <T> List<*>.typeOf() : List<T> { ➍
 val retlist = mutableListOf<T>() ➎
 this.forEach {
 if (it is T) { ➏
 retlist.add(it) ➐
 }
 }
 return retlist ➑
}
open class Employee(val name:String) {
 override fun toString(): String {
 return name
 }
}
class Programmer(name:String) : Employee(name) {}
class Tester(name:String) : Employee(name) {}

➊ Создадим список объектов Programmer и Tester.
➋ Давайте вызовем функцию расширения (типа List) с именем typeOf. Мы передаем Programmer в качестве аргумента типа, что означает, что мы хотим, чтобы эта функция возвращала только список объектов Programmers.
➌ Мы просто перебираем каждый элемент списка. Мы печатаем свойство name и Java simpleName.
➍ Теперь мы подошли к определению функции расширения. Мы определяем параметр типа <T>, мы используем T в качестве возвращаемого типа этой функции. Кроме того, мы хотим, чтобы эта функция работала со списком любого типа - отсюда и синтаксис.
➎ Давайте определим изменяемый список; мы будем использовать его для хранения отфильтрованного списка.
➏ Это код, который не компилируется, потому что мы больше не знаем, что это за List во время выполнения. Kotlin, как и Java, стирает информацию о типе. Но давайте на мгновение предположим, что Kotlin действительно сохраняет информацию об общем типе; если это так, то с этим кодом все в порядке.
➐ Если условие в порядке, давайте добавим текущий элемент к возвращаемому значению.
➑ Наконец, вернем отфильтрованный список.
Листинг 7-18 работал бы отлично, если бы только List.typeOf мог во время выполнения помнить, что это за список. Чтобы решить эту проблему, мы будем использовать ключевое слово inline и reified. В листинге 7-19 показано, как это сделать.
Листинг 7-19. Как использовать Reified и Inline в функции
inline fun <reified T> List<*>.typeOf() : List<T> { ➊
 val retlist = mutableListOf<T>()
 this.forEach {
 if (it is T) {
 retlist.add(it)
 }
 }
 return retlist
}

➊ Сделайте функцию встроенной и используйте ключевое слово reified перед параметром типа. После этого функция может сохранять информацию о типе во время выполнения.
Вы можете овеществлять только встроенные функции. Когда вы встраиваете функцию, компилятор заменяет каждый вызов этой функции ее фактическим байт-кодом (а не только адресом функции). Это похоже на копирование и вставку байт-кода функции везде, где функция вызывается. Вот как компилятор узнает точный тип, который вы использовали в качестве типа аргумента. Следовательно, компилятор может сгенерировать байт-код для конкретного класса, который использовался в качестве аргумента типа.
Итак, если мы сделаем такой вызов:
val mprogs = mlist.typeOf <Программист> ()
и если мы перепроектируем байт-коды, которые компилятор сгенерирует для нашей овеществленной функции, это может выглядеть как в листинге 7-20.
Листинг 7-20. Реифицированная функция
val retlist = mutableListOf<Programmer>()
this.forEach {
 if (it is Programmer) {
 retlist.add(it)
 }
}
return retlist

Как видите, мы больше не проверяем, является ли это T - мы проверяем, является ли это Programmer.
Сгенерированный байт-код ссылается на определенный класс (Programmer), а не на параметр типа (T).
По этой причине стирание типов не влияет на овеществленные функции. Это, конечно, увеличит размер вашей исполняемой программы, поэтому используйте ее экономно. Перечисление 7-21 показывает полный и исправленный код овеществляемого примера.
Листинг 7-21. Фильтрация списка с использованием параметра типа
fun main(args: Array<String>) {
 val mlist = listOf(Programmer("Ted"), Tester("Steph"))
 val mprogs = mlist.typeOf<Programmer>()
 mprogs.forEach {
 println("${it.toString()} : ${it.javaClass.simpleName}")
 }
}
inline fun <reified T> List<*>.typeOf() : List<T> {
 val retlist = mutableListOf<T>()
 this.forEach {
 if (it is T) {
 retlist.add(it)
 }
 }
 return retlist
}
open class Employee(val name:String) {
 override fun toString(): String {
 return name
 }
}
class Programmer(name:String) : Employee(name) {}
class Tester(name:String) : Employee(name) {}

Краткое содержание главы
• Общее программирование позволяет нам повторно использовать алгоритмы.
• Все коллекции в Kotlin используют дженерики.
• В Kotlin нет сырых типов, таких как в Java.
• Есть три варианта, о которых вам нужно знать: (1) инвариантность; (2)
ковариация; и (3) контравариантность.
• Kotlin, как и Java, стирает информацию об общих типах во время выполнения; но, если вы хотите сохранить информацию о типе, встроите свои функции и используйте овеществленное ключевое слово reified.
Это конец части книги, посвященной Котлину. В следующей главе мы начнем обсуждение программирования для Android. Мы откажемся от дальнейшего обсуждения программирования на Котлин, вместо этого, настроив среду разработки Android Studio, будем изучать Котлин в этой среде.
